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Leveraging Genetic Variability across Populations
for the Identification of Causal Variants

Noah Zaitlen,1,2,5 Bogdan Pasxaniuc,3,5 Tom Gur,1 Elad Ziv,4 and Eran Halperin1,2,3,*

Genome-wide association studies have been performed extensively in the last few years, resulting in many new discoveries of genomic

regions that are associated with complex traits. It is often the case that a SNP found to be associated with the condition is not the causal

SNP, but a proxy to it as a result of linkage disequilibrium. For the identification of the actual causal SNP, fine-mapping follow-up is per-

formed, either with the use of dense genotyping or by sequencing of the region. In either case, if the causal SNP is in high linkage disequi-

librium with other SNPs, the fine-mapping procedure will require a very large sample size for the identification of the causal SNP. Here,

we show that by leveraging genetic variability across populations, we significantly increase the localization success rate (LSR) for a causal

SNP in a follow-up study that involves multiple populations as compared to a study that involves only one population. Thus, the average

power for detection of the causal variant will be higher in a joint analysis than that in studies in which only one population is analyzed at

a time. On the basis of this observation, we developed a framework to efficiently search for a follow-up study design: our framework

searches for the best combination of populations from a pool of available populations to maximize the LSR for detection of a causal

variant. This framework and its accompanying software can be used to considerably enhance the power of fine-mapping studies.
Introduction

Over the last several years, many genome-wide association

studies (GWAS) have been employed for the identification

of hundreds of new genomic regions containing genetic

polymorphisms contributing to the risk of complex

human diseases. Each of these newly identified loci con-

tain dozens, sometimes even hundreds, of SNPs, few of

which are expected to play a functional role in altering

the disease status. Identifying these causal SNPs may

provide important insights into the biological basis of

complex human diseases, as well as offer diagnostic tools

that aid in treating patients and personalizing medicine.

Follow-up studies aim to identify the causal variants in

GWAS by more thoroughly examining the proximal

genetic variation of the associated locus. This examination

is usually done by a fine-mapping approach in which the

genomic region is densely genotyped. Recent advances in

high-throughput sequencing technologies may lead, in

the next years, to follow-up studies that fully sequence

the associated region.

A major challenge currently facing the community is the

design of follow-up studies for the identification of the

causal variant such that the power to distinguish the causal

variant from the neighboring SNPs is maximized. One of

the major obstacles complicating the design of such

studies is the local linkage disequilibrium (LD) structure

at the associated loci. In most cases, many of the SNPs in

these loci are in strong LD with one another because of

their physical proximity, and several of them are likely to

be linked to the causal variants. Although this local LD
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structure provides GWAS a powerful means of finding

new associations without directly genotyping the causal

variant, it also makes the identification of the causal

variant a challenging task. Test statistics calculated in a

follow-up study over tightly linked SNPs will behave simi-

larly, and thus it is difficult to distinguish between the

causal variant and its proxies.

In order to measure the ability of a follow-up study to

resolve the causal SNPs from those in strong LD, we intro-

duce a new metric called the localization success rate (LSR),

described in detail below. For these new metrics, consider

a follow-up study of a locus containing exactly two SNPs

that are in perfect LD, with only one being causal. If the

sample size and odds ratio are large, the study will have

a very high power to detect association; that is, the proba-

bility of finding a statistically significant result will be

high. However, the LSR will only be 50%, because both

SNPs will have identical statistics. Given that a GWAS

has already identified the locus as having a significant asso-

ciation, we are more interested in our new metric than in

power.

Traditionally, a follow-up study focuses the sequencing

and genotyping of an associated locus on individuals

from the original study population. This provides powerful

confirmation of the original result, describes more pre-

cisely the set of polymorphisms in the region, and protects

against heterogeneous effects across populations. How-

ever, it is yet to be determined whether conducting

a follow-up study in the same population as that of the

original study provides the most powerful means of identi-

fying the causal variant. Recently, several groups have
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attempted an alternative approach to this problem by con-

ducting follow-up studies over multiple populations.1,2

Leveraging the differences in local LD structure between

the populations may amplify the signal of the causal

variant, because SNPs strongly linked to the causal variant

in one population may not be strongly linked in another.

However, to date, it is not clear whether this approach is

useful in general. One may expect that always using a pop-

ulation with low average LD, such as an African popula-

tion, will result in the greatest LSR in distinguishing the

causal SNP from its neighbors.

In this work, we evaluate different strategies for fine

mapping a region. We focus on fine-mapping follow-up

studies in which significant GWAS results have been

reported in a single population, because this is the most

common form of GWAS conducted so far. Specifically, we

develop an analytical framework for evaluating the LSR

of detection of a causal SNP in a region; our framework

takes into account the structure of the linkage disequilib-

rium in the studied population. Furthermore, we deter-

mine which population or set of populations achieves,

on average, an increase in LSR for fine mapping. Surpris-

ingly, our results suggest that studies involving a mix of

two or three populations result in higher average LSRs

than do studies over a single population, even for cases

in which the single population is of higher genetic diver-

sity (e.g., an African population). Furthermore, we find

that the optimal choice of populations varies from locus

to locus. Although we focus primarily on diseases in which

the causal variant has a fixed effect across all populations

(as this is the case for the majority of diseases studied to

date3), we also propose a multistage method for addressing

diseases with heterogeneous effects across populations.

We incorporated our analytical framework into a soft-

ware package called MULTIPOP, which takes as an input

a set of regions, test statistics obtained for the SNPs in these

regions in previous studies of the phenotype (used as

priors), and a set of reference data sets from the available

populations. MULTIPOP uses this information to decide

how many samples of each population should be further

studied so that the LSR of detection of a causal SNP will

be maximized under budget constraints.
Material and Methods

In a fine-mapping follow-up study, individuals are genotyped or

sequenced at a set of loci that are shown to be associated with

the phenotype of interest in a previous GWAS. In this work, we

examine the question of whether the individuals selected for the

study should come from one or several populations and how

this choice affects the LSR of the causal variant from its linked

proxy SNPs. A direct approach to answering this question would

be to perform an extensive set of simulations of fine-mapping

studies under a variety of disease models with reference data sets

such as the HapMap4 and to determine which study designs are

more powerful for causal-variant identification. This approach,

although accurate, is prohibitively computationally expensive.
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As an alternative to this, we put forward the ideas of Han et al.5

and Conneely et al.,6 who use insightful statistical and algorithmic

observations to model the null and alternative distributions of

case control studies, providing a computationally feasible means

of studying multipopulation fine-mapping studies. In addition,

we develop an analytical framework for designing new studies

over multiple populations, implemented in the software package

that we call MULTIPOP.

The multipopulation approach is based on the following intui-

tion: Suppose that in an initial study we identify several significant

SNPs at a locus with one true causal variant; as observed by

Lawrence et al.7 Therefore, we are likely to find more than one

significant SNP in that region, because all SNPs linked to the causal

variant are potentially significant. Consider a SNP strongly corre-

lated with the causal SNP (e.g., r2 > 0.9) and therefore highly

significant. If we conduct a follow-up study in the same popula-

tion, the SNP will probably be significant again. However, if we

select another population, in which the SNP is poorly correlated

to the causal SNP (e.g., r2 ¼ 0.1), then only the causal variant

will remain a strong candidate in the final analysis. Built on this

intuition, our framework searches for the best combination of

populations to maximize the LSR for distinguishing the causal

variant among the tightly correlated SNPs in a region.

The challenge in implementing the above intuition is that the

correlation structure between the SNPs is based not merely on

two linked SNPs but on a complex correlation structure that

involves all SNPs in the region. To overcome this challenge, our

method uses a carefully chosen multivariate normal (MVN) distri-

bution to sample from the distribution of simulated case-control

studies over a region. That is, given the set of data that we would

use to simulate a study, our method computes the test statistics

over the simulated data without actually paying the computa-

tional cost of simulation. This strategy makes it feasible to estimate

the LSR of a study on the basis of the multidimensional correlation

structure. In addition, we use this framework to efficiently search

for an optimal study design in which there is freedom in the

choice of the studied population(s).
Modeling LD by Using the MVN Distribution
We will first describe how the MVN distribution can be used for

estimation of the LSR of detecting the causal SNP of a study

over one population. Consider an association study in which

we genotype a set of SNPs, s1, s2, ., sk, and measure their

frequency in N/2 cases, pþ1 , pþ1 , ., pþk , and N/2 controls, p�1 ,

p�2 , ., p�k , from the population. We can compute a statistic (the

Z score) for each SNP, Zi ¼
ffiffiffiffi
N
p
ðpþi � p�i Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

p
, in which

pi ¼ (pþi þ p�i )/2. Under the null hypothesis (the allele frequencies

in the cases and the controls are the same), this statistic is known

to be distributed according to a standard normal distribution.8

The alternative hypothesis is composite, depending on which

SNP is causal and its relative risk. Note that throughout this paper

we assume an additive model and that the term ‘‘relative risk’’

refers to the allelic relative risk. If we assume that SNP sc is the

causal SNP with a relative risk of gc, it is easy to calculate the

power of the test Zc under a significance level of a. This power

can be calculated by noting that Zc � Nðlc

ffiffiffiffi
N
p

,1Þ, in which the

noncentrality parameter is lc

ffiffiffiffi
N
p
¼

ffiffiffiffi
N
p
ðpþc � p�c Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pcð1� pcÞ

p
,

which can be estimated given the relative risk and the minor

allele frequency (MAF) in the population. However, as a result

of linkage disequilibrium, other SNPs in the region may also

have a high power for association when this statistic is used.
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Particularly, it is well known9 that for a SNP sj with a correlation

coefficient rcj with the causal c, Zj � ðlj

ffiffiffiffi
N
p
Þ, in which

lj

ffiffiffiffi
N
p
¼ rjclc

ffiffiffiffi
N
p

. In the extreme case that rcj ¼ 1, there is essen-

tially no distinction between statistics computed at sc and at

sj—the power of association may be high in both SNPs, but the

LSR for the causal SNP will be bounded by 0.5. It follows that

the LSR of the causal SNP in a region is a function of the allele

frequency of the causal SNP, the relative risk, the correlation struc-

ture in that region, and the study size.

One simple way of estimating the LSR is by simulation. We can

use a reference data set such as the HapMap4,10 to simulate

multiple case-control panels by specifying a causal variant, a rela-

tive risk, and a prevalence. There are various existing tools that

provide such simulations. In this work, we chose the widely

used software HapGen,11 which models the LD structure by using

the Li-Stephens model.12 For each such panel, we can calculate the

statistics Z1, ., Zk and test whether the causal SNP turns out to be

the one with the largest statistic.

Although the simulation approach provides accurate LSR estima-

tion, it is highly inefficient. In our case, the large parameter space

for the study design (i.e., the number of individuals from each of

the populations), the causal SNP, and the relative risks make the

task of performing a simulation for each point in that space compu-

tationally infeasible. We therefore add upon the observation made

by Han et al.5 and Conneely et al.,6 who noticed that the distribu-

tion of Z ¼ Z1, Z2, ., Zk follows an MVN distribution

Z � NðL
ffiffiffiffi
N
p

,SÞ, in which l
ffiffiffiffi
N
p
¼ ðr1clc

ffiffiffiffi
N
p

,r2clc

ffiffiffiffi
N
p

,.,rkclc

ffiffiffiffi
N
p
Þ

and S is the k 3 k variance-covariance matrix of the SNPs in which

the ith, jth entry of S is the correlation coefficient of SNPs si, sj.

Given a region of the genome where the MAFs and correlations

of the SNPs are known, we can replace the simulation approach by

a simple Monte Carlo sampling from the corresponding MVN

distribution. Put differently, we draw samples directly from the

MVN distribution under the alternate hypothesis; each draw

corresponds to one round of simulation in which a case-control

panel has been created. We can now calculate the LSR as the top

statistic on the basis of these draws. We show in the Appendix

that this approach results in power estimates that are extremely

similar to the one calculated by the HapGen program.11 A similar

approach has been previously used to efficiently calculate the

power of an association study.5,6 Note, however, that in our case

the application is different because we consider the LSR, not the

power of association, for distinguishing the causal variant.

Furthermore, the use of multiple populations requires a different

MVN distribution than that described above.
The MVN Distribution in Meta-Analysis
To extend the single-population MVN distribution to utilize infor-

mation from several studies over multiple populations, we must

first select an appropriate statistical test. There exist many

methods for combining information across association studies,

(see Kavvoura and Ioannidis13 for a review). Here, we consider

the weighted Z score statistic,8 a commonly used meta-analysis

method.14

Given M independent studies P1, P2, ., PM, each of which geno-

types the SNPs s1, s2, ., sk, let Zi, j be the Z score of SNP si in study

Pj. Each study has a vector of noncentrality parameters L1, L2, .,

LM, a variance-covariance matrix S1, S2, ., SM, and a number of

individuals N1, N2, ., NM. For the sake of presentation, we will

assume that the studies are balanced (i.e., that there are the

same number of cases and controls), but the unbalanced case
The A
can be easily incorporated into the framework. For SNP si we can

compute the weighted Z score statistic Ti ¼
P

j

ffiffiffiffiffi
Nj

p
Zi,j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jNj

r
.

Because each Zi, j is normally distributed with a mean of li, j and

a variance of 1, Ti is also normally distributed, with a mean ofP
j

ffiffiffiffiffi
Nj

p
li,j

ffiffiffiffiffi
Nj

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jNj

r
and a variance of 1. Therefore, the distribu-

tion of T ¼ (T1, T2, ., Tk) will also be MVN:

T � N

0
B@
P

j

ffiffiffiffiffi
Nj

p
Lj

ffiffiffiffiffi
Nj

p
ffiffiffiffiffiffiffiffiffiffiffiffiP

j Nj

q ,

P
j NjSjP

j Nj

1
CA: (Equation 1)

Because the covariance matrices are fixed (they can be esti-

mated from the HapMap data set), the distribution T is deter-

mined by the study sizes, the causal SNP, the relative risk, and

the prevalence of the disease. For such a choice of parameters,

we can efficiently generate meta-analysis statistics drawn from

the alternative distribution for any locus by using a Monte Carlo

approach. We can draw random samples from T by using exist-

ing software packages (here we use the ‘‘mvtnorm’’ R package);

each draw from T is used as a replacement for simulating case-

control panels over each of the M populations and combining

their results with the meta-analysis statistic. We use this Monte

Carlo approach to examine the effectiveness of combining infor-

mation from distinct populations for identification of the causal

variant. Intuitively, the optimal study design will consist of one

population with the lowest average LD; surprisingly, however,

we find that for large sample sizes, a combination of a few

distinct populations yields the best LSR. (see Results section for

details).
Optimizing Study Designs
A natural question arising from the above analysis is how one can

design a study that is optimized for detection of the causal variant

in a region. Given a set of loci that are the targets of fine mapping

and a set of M populations available for genotyping, we are inter-

ested in choosing a number Ni for each population withPM
i¼1 Ni ¼ N, such that the meta-analysis study involving Ni cases

and controls from population i has the maximal LSR of detection

of the causal variant; the maximum is taken across all studies

involving N genotyped samples. To address this problem we

have developed an algorithm implemented in our MULTIPOP soft-

ware that searches for the optimal study design, which we describe

next.

Once relative risks, prevalences, sample sizes, and causal vari-

ants are specified for each population, the MVN distribution in

Equation 1 gives the alternative distribution of the meta-analysis

statistic. Searching for the optimal study design is then reduced

to the problem of searching over the design parameters to identify

the design that maximizes the expected LSR. To perform such

a search, we need to have a prior distribution on the relative risk

of each SNP si in each population. This prior can be calculated

on the basis of the results of a previous association study; such

a study will provide the statistics Z*¼ (Z1*, ., Zk*) for a given pop-

ulation. Z* ¼ (Z1*, ., Zk*) are realizations of random variables Z ¼
(Z1, ., Zk) drawn from a MVN distribution. In this section, we

assume that the relative risks across multiple populations are the

same, and we later show how MULTIPOP can be adapted to

SNPs with heterogeneous effects. Under this fixed-effects assump-

tion, we calculate a prior probability qi that SNP si is the causal SNP.

That is, we want to find the maximum posterior probability qi ¼
Pr(si is causal j Z*). Following the intuition that SNPs with smaller
merican Journal of Human Genetics 86, 23–33, January 8, 2010 25



p values are more likely to be causal, a naive way of estimating qi is

by setting qi ¼ jZ�i j=
Pk

j¼1 jZ�j j.
Although intuitive and easy to implement, the above approach

may be suboptimal because it completely ignores the correlation

structure in the region. We therefore implemented an alternative

approach that takes into account the statistic Z*, as well as the

correlation structure in the region. We use the original study to

calculate the empirical estimate of the relative risks g1, ., gk of

the SNPs in the region. If si is causal with a relative risk of gi,

then we can calculate the value li, in which li

ffiffiffiffiffiffi
N0
p

is the expected

noncentrality parameter of the statistic Zi and N0 is the original

study size. Now, under the assumption that si is causal, Z* is

drawn from the MVN distribution Z � NðL
ffiffiffiffiffiffi
N 0
p

,SÞ, in which

l
ffiffiffiffi
N
p
¼ ðr1ili

ffiffiffiffiffiffi
N 0
p

,.,rkili

ffiffiffiffiffiffi
N0
p
Þ. For each SNP si, we compute qi, the

MVN probability density function of the observed Z scores Z*

under Z given that si is causal, and normalize these so that they

sum to 1. These q1, q2, ., qk serve as the prior probabilities that

each SNP is causal. Under various simulations, we find that this

approach results in better LSR estimations (data not shown)

than do alternative estimates of qi.

Each study design D is specified by sample sizes (N1, ., NM) for

each population, such that
PM

i¼1 Ni ¼ N. For a design D, we

compute the LSR bD, i given that SNP si is causal and has relative

risk gi, which is assumed to be known (gi is estimated from the

previous association study). We describe several different measures

of LSR in the Results section. The expected LSR bD for the design D

is then estimated as the weighted sum of bD, i:

bD ¼
X

i

qibD,i:

Our method identifies the best fine-mapping study design by

using a grid-search algorithm over all possible designs D; this

grid search is feasible when the number of populations involved

is not too large. The final design chosen is the D with the

maximum expected LSR out of all designs on the grid.
Results

To examine the effects of using multiple populations on

the LSR for resolving a causal variant in a fine-mapping

study, we performed extensive simulations over the

HapMap populations by using the MULTIPOP software

outlined above. We began by showing that the average

LSR is indeed increased when studies are designed with

multiple, as opposed to single, populations. Second, we

examined potential mechanisms for this improvement

by looking at the distribution of optimal designs. Third,

we investigated the effect that study design has on the

LSR and show that our proposed method attains close to

optimal LSR, outperforming designs that ignore the local

LD structure. Fourth, we explored an extension of our

method to handle SNPs with heterogeneous effects across

populations by using a multistage design. Finally, as a con-

crete example of the applicability of our approach, we used

existing breast cancer GWAS results to design a powerful

follow-up study over the HapMap populations.

For all our analyses, we used release 21 of the HapMap10

haplotype data for chromosome 1 over the CEU, YRI,

and ASN (JPTþCHB) populations. We randomly selected
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10,000 SNPs to serve as causal variants, and we created

a locus based on each of these SNPs by taking 20 additional

SNPs on each side of the selected causal variants. These loci

span 30 Kb on the average. The histogram of the MAFs of

the 10,000 randomly selected causal variants is displayed

in Figure S1 (available online), showing that the random

set of causal variants is sampled across all MAFs. We note

that these loci are not used for modeling one disease

with 10,000 causal variants but, rather, serve as a large

set for assessing the expected behavior of our methods

across the genome. For each of these 10,000 loci, on the

basis of the HapMap data, we computed a correlation

matrix S used in the meta MVN described in the Material

and Methods section. These simulated loci served as the

starting point for each of the experiments described in

this section. In the Appendix, we show that very similar

results can be obtained by simulating the data sets with

the use of HapGen.11 A prevalence of 0.01 is used

throughout this section.

LSR Metrics

Currently, there is no widely accepted measure of power

for identifying the causal SNP (fine-mapping power), so

we start by giving a precise definition of how we measure

the LSR for the causal variant from its neighboring SNPs

in this work. We propose two correlated measures, each

of which may be useful depending on the study objective;

both measures can be easily calculated by using samples

drawn from the meta MVN.

The first measure of LSR computes the fraction of study

samples in which the causal variant has the lowest p value

among all SNPs in the region. This corresponds to the

scenario in which exactly one SNP from each region is

undergoing functional analysis; we therefore measure the

fraction of regions in which the actual causal variant will

be chosen for the functional analysis. The second measure

that we use is the average rank of the causal variant when

the SNPs are ordered from lowest to highest p value with

ties broken randomly. Although this is not a measure of the

probability of an event, and thus not a measure of power in

the usual statistical sense, it can be thought of as the

expected number of SNPs that will have to undergo func-

tional analysis before the causal variant is isolated. Because

it is likely that statistical rank will prioritize functional

analysis, this measure is a useful way of examining fine-

mapping results.

The suggested measures do not quantify the precision of

the estimates of the probability that SNP is causal (qi, as

described in the Material and Methods section). Instead,

given such probabilities, or any other statistic, they aim

at measuring the potential success of a follow-up study in

which, for example, functional analysis will be performed

on a smaller number of SNPs. Although the proposed

measures are correlated, they are not always optimized by

the same choice of populations, and therefore an investi-

gator should decide which measure to use on the basis of

his or her plans for a follow-up study. Note that each of
10



Figure 1. The Average Rank of the Causal Variant in 10,000
Simulated Loci, with 3000 Cases, 3000 Controls, and g ¼ 1.4 for
Seven Different Study Designs
Designs over multiple populations, such as the CEUþYRI, split
individuals evenly among them. Using multiple populations
reduces the number of functional assays expected before the
causal variant is identified.

Figure 2. The Fraction of Times that a Design Achieves the
Maximal LSR for Each of the Study Designs
The statistics are based on 10,000 simulated loci, with 3000 cases,
3000 controls, and g ¼ 1.4. As expected, the YRI population is
most often the best choice for study design. However, it is the
top choice only 44% of the time. The combination of all three
populations is almost never the best study design, accounting
for only 2.6% of the 10,000 designs. Interestingly, it maximizes
the average LSR, suggesting, first, that it protects against the vari-
ance of different local LD structures and, second, that tailoring
study designs to the loci in the follow-up study is beneficial.
these measures are calculated in a trivial manner once

samples from the alternative MVN distribution are gener-

ated. Both measures are applied only to SNPs exceeding

a specified significance level, and the sample sizes used in

our simulations provided enough power that the causal

variant had a p value % 0.05 more than 98% of the time.
Balanced Multiple-Population Studies

To demonstrate the benefit of using multiple populations,

we first examined the simple approach of dividing individ-

uals evenly among the HapMap populations in compar-

ison to using all individuals in each population in isola-

tion. For example, the YRIþCEU study uses the same

number of YRI and CEU samples, whereas the CEU study

includes only CEU samples.

Figure 1 presents the estimated LSR of seven different

balanced study designs, clearly showing that there is an

increase in the LSR of identifying the causal variant

when multiple populations are used. The average rank of

the causal variant decreases from 3.40, when the study is

performed only on the ASN population, to 1.94, when

the study design involves all three populations. To date,

most GWAS have been performed in one population,

usually a population of European ancestry similar to the

CEU population in the HapMap. As shown in Figure 1,

studies that combine CEU individuals with individuals

from YRI or ASN populations achieve higher LSRs (i.e.,

a significant reduction in the average rank of the causal

SNP). Furthermore, study designs that involve a combina-

tion of populations result in higher LSRs than do studies

involving one population alone, even when compared to

the YRI population.

The above result is surprising, given that intuition leads

us to believe that performing a study in a single population

with the lowest average LD in the fine-mapping region
The A
should yield the greatest LSR. Figure 2 shows that this intu-

ition is indeed correct. If we consider one genomic region

at a time, in the vast majority of cases, studies involving

exactly one of the populations will result in better fine-

mapping power than will studies involving a combination

of populations. In particular, for most genomic regions,

the YRI studies yield the greatest LSR. This is intuitive,

because it is expected that in most cases two SNPs that

are in high LD in an African population will also be in

high LD in other populations, such as populations of Euro-

pean ancestry.

At first glance, the conclusions of Figure 1 and Figure 2

may seem contradictory. However, because the population

that maximizes the fine-mapping LSR differs across

different regions, studies that involve more than one pop-

ulation essentially achieve a high average LSR, when the

average is taken across all studied regions. Put differently,

there is a higher variance across regions in which the

optimal LSR is achieved by one population alone, and

therefore a combination of two or more populations yields

a better average LSR.

Other choices of the sample sizes, relative risks, and

measures of LSR resulted in a similar trend. For example,

Figure 3 shows the change in LSR for CEU, ASN, CEUþ
ASN, as well as relative risks 1.1 to 1.9 and a fixed sample

size of 1000 cases and 1000 controls. The trend observed

in Figure 2 for g¼ 1.4 extends to any considered g. Designs

across both of the populations outperform each popula-

tion in isolation. However, as the relative risk increases,

there are diminishing returns in using multiple popula-

tions as compared to using single populations. We believe

that this is because even SNPs with relatively strong r2 are
merican Journal of Human Genetics 86, 23–33, January 8, 2010 27



Figure 3. Histogram of the Average Rank of the
Causal Variant in 10,000 Simulated Loci, with 1000
Cases, 1000 Controls, and a Relative Risk of 1.4 for
Three Different Study Designs over a Range of Rela-
tive Risks
The study designs are all CEU, all ASN, and CEU-
þASN. CEUþASN designs have individuals split
evenly between them. The trend observed in the
simple designs is preserved across relative risks.
easily distinguished at high relative risks. On the other

hand, SNPs with very strong signals are very tightly corre-

lated in both CEU and ASN in that they cannot be distin-

guished with the current sample size (or at all, in the case

of perfect LD).

Designing Multiple-Population Studies

The results presented above illustrate the effectiveness of

using multiple populations in fine-mapping studies. How-

ever, given a fixed budget of N individuals, an uneven split

of individuals across the populations may provide increased

LSR of the causal variant. Furthermore, as the name sug-

gests, fine-mapping follow-up studies are generally based

on results of previous GWAS, and incorporating this prior

information may lead to better resolution of the causal SNP.

To examine this scenario, we began by simulating a study

made up of 1000 cases and 1000 controls in one of the

HapMap populations. We then quantified the LSR increase

when additional individuals from various populations

were added to the study. To assess the gain in LSR due to

multiple populations, we also used combinations of popu-

lations not contained in the original study. For each of

these designs, we computed the LSR over each of the

10,000 simulated loci and plotted the average LSR. The

results are shown in Figure 4 and Figure 5.

The study designs with multiple populations have signif-

icantly better LSRs across a range of sample sizes, with the

benefit more pronounced in smaller studies. As the sample

size grows, the variance of test statistics decrease, so that

closely linked SNPs are more easily distinguished even in

one population. Notice that the combination of CEU and

YRI outperforms the designs across all three populations

until sample sizes are very large, at which point the use

of all populations becomes more successful. This demon-

strates the importance of carefully selecting the popula-

tions to be used in the study as opposed to simply

including as many different populations as possible.

It is intriguing to understand the limits of such an

approach. To do this, we compared the different study

designs with a hypothetical design in which the optimal

population was used for each region. Note that no method
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could ever achieve such LSR, because we are

using different study designs for different

regions; however, this hypothetical design is

still useful and serves here as an upper bound

on the possible LSR that one can achieve.
Using our MULTIPOP method described above, we

selected a population or combination of populations

from among those described in the previous paragraph.

The results are also shown in Figure 4 and Figure 5.

Although our method is not as successful as the hypothet-

ical optimal design, it clearly outperforms a naive selection

of a single type of population. The fact that there is a clear

difference between choosing the best populations at every

locus and using the combination of all three populations

indicates that there is large variance in the performance

of a study that is based on any particular population.

Furthermore, the variance of the MULTIPOP approach is

much lower than even that of the multipopulation

approach (data not shown). Thus, it improves the average

LSR while still protecting against regions with very poor

performance in a particular population.

Implications for Sequencing-Based Studies

Many future follow-up studies are expected to use sequenc-

ing technologies for the fine-mapping stage. Particularly,

a possible strategy is a multistage study in which the first

stage consists of the sequencing of a small number of indi-

viduals and the second stage consists of the genotyping of

a set of SNPs discovered in the first stage across a larger

population. This is, for example, similar to the procedure

followed by Udler et al.1 It is therefore of interest to discuss

our findings in the context of more dense genotyping data

that result from such sequencing studies.

For this purpose, we simulated 1000 regions from the ten

ENCODE regions that were thoroughly resequenced in the

HapMap populations.15 Each of the 1000 regions contains

81 SNPs spanning 18 Kb on average (40 SNPs at each side of

the causal SNP), as opposed to 41 SNPs that were used in

the previous experiment. We used a wider window because

the SNPs in the ENCODE region are more densely geno-

typed. For each of these regions, we computed the LSR at

a relative risk of 1.4.

Figure 6 shows the results for the ENCODE regions and

for random HapMap regions for the same study designs.

Although the ENCODE regions have lower LSRs than do

random regions, the same trends in terms of study design
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Figure 4. Average Rank and Fraction of Time that
a Causal Variant Has the Best Statistics in Follow-
Up Studies over 10,000 Simulated Loci with a Rela-
tive Risk of 1.4
The designs include 1000 cases and 1000 controls
from the CEU data set combined with x cases and
controls taken from CEU, YRI, ASN, and ASN þ
YRI, where x ranges from 0 to 10,000 in steps of
500. For the studies involving YRIþASN designs,
the same number of samples is taken from both
YRI and ASN. The hypothetical optimal method is
choosing the optimal design in each of the 10,000
designs, and MULTIPOP uses the populations pre-
dicted by our algorithm (see Material and Methods)
as having the maximal LSR.
are still observed. That is, the use of multiple populations

improves the LSR of identification of the causal variant

regardless of the SNP density in the regions targeted for

fine mapping.

Causal Variants with Heterogeneous Effects

Although the majority of causal variants have a fixed effect

size across all populations,3 a significant percentage will

show a heterogeneous effect across different populations.

In this case, a naive implementation of our proposed

approach will incorrectly use an estimated relative risk

from only a single population; namely, the population in

which the initial GWAS was performed. In order to address

this situation, we propose a multistage design in which an

initial sample is taken from each of the available popula-

tions and used for estimating the relative risks for each

population and these estimates are then plugged into our

proposed framework in the design of the next stage.

To explore the effectiveness of such an approach, we

simulated 3000 case and 3000 control data sets with rela-
The American Journ
tive risks 1.1, 1.3, and 1.6 for the ASN, YRI,

and CEU data, respectively. We assessed the

LSR when each population was used indepen-

dently in a multistage design in which 1500

cases and 1500 controls (500 cases and 500

controls from each population) were geno-

typed in the first stage. The accuracy of the esti-

mate of the relative risk from the first stage is

function of the MAF, the true relative risk,

and the sample size. Choosing the optimal

number of individuals for each stage is an

interesting problem beyond the scope of this

work. We then plugged the results for the first

stage into the MULTIPOP framework to deter-

mine a powerful design for the remaining

1500 cases and 1500 controls by searching

over all balanced combinations of samples

from the three populations. The results are pre-

sented in Figure 7. The ASN sample performed

poorly because it was underpowered for a rela-

tive risk of only 1.1. The multistage MULTIPOP

method outperformed the single populations
even in the presence of heterogeneous effect sizes. Despite

its low relative risk, the ASN population is still beneficial in

many loci. The CEU, YRI, CEUþYRI, and ASNþCEUþYRI

data were optimal in 34%, 36%, 25%, and 5% of the

10,000 loci, respectively, demonstrating that in 5% of the

loci, the addition of ASN individuals increased the LSR.

Sample Designs for Breast Cancer

To provide a concrete example of the applicability of our

approach, we used MULTIPOP to design a follow-up study

based on published results from breast cancer GWAS.2,16–19

We assumed a total budget of 6000 individuals and access

to case-control groups in all of the three HapMap popula-

tions: CEU, YRI, and ASN. For each of the published

SNPs (rs11249433, rs1219648, rs13387042, rs2046210,

rs2107425, rs2180341, rs2981582, rs3803662, rs3817198,

rs4415084, rs8051542, and rs999737), we took a window

of 81 SNPs and extracted the corresponding haplotypes

for the unrelated HapMap individuals in all three popula-

tions. We used the expected Z scores given the published
al of Human Genetics 86, 23–33, January 8, 2010 29
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Figure 5. Average Rank and Fraction of Time that
a Causal Variant Has the Best Statistics in Follow-
Up Studies over 10,000 Simulated Loci with a Rela-
tive Risk of 1.4
The designs include 1000 cases and 1000 controls
from the YRI data set combined with x cases and
controls taken from CEU, YRI, ASN, and ASN þ
CEU, where x ranges from 0 to 10,000 in steps of
500. For the studies involving CEUþASN designs,
the same number of samples is taken from CEU
and ASN. The hypothetical optimal method is
choosing the optimal design in each of the 10,000
regions, and MULTIPOP uses the populations pre-
dicted by our algorithm (see Material and Methods)
as having the maximal LSR.
odds ratios and the pairwise LD estimated from the CEU

HapMap populations. Unfortunately, only the most signif-

icant odds ratios and Z scores are publicly available. In
Figure 6. Histogram of the Average Rank of the Causal Variant in 1000 ENCODE
of 1000 Cases and 1000 Controls and a Relative Risk of 1.4
Seven designs over different combinations of the HapMap populations were exami
multiple populations improved the LSR of identifying the causal variant.
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practice, we recommend using the Z scores

for all of the SNPs as priors, imputing those

that are missing from the study. For this

reason, it is possible that the following designs

could be further improved with the use of addi-

tional data from the original studies.

MULTIPOP explored all designs over subsets

of the three populations, with a total size of

3000 cases and 3000 controls and a grid

interval of 200 individuals. For each of the

designs, we computed the expected average

rank of the causal variants by integrating over

each SNP in the considered windows, using

the expected Z scores to compute priors (as

described in detail above). As in the simulation

studies, the optimal design varied widely from

region to region, one population generally out-

performing the others in terms of estimated

LSR. However, as in our previous simulations,

the overall most successful estimated design
is a mixture of 600 CEU, 2800 YRI, and 2600 ASN individ-

uals. Many other similar designs were close in expected

LSR, so we believe that the grid interval was sufficiently
Regions and 1000 HapMap Regions for a Study Size

ned. In both random and ENCODE regions, the use of



Figure 7. Average Rank of the Causal Variant in 10,000 Simu-
lated Loci with 3000 Cases, 3000 Controls, and Relative Risks of
1.1, 1.3, and 1.6 for ASN, YRI, and CEU, Respectively
Four study designs were considered: all ASN, all CEU, all YRI, and
a multistage design using our MULTIPOP algorithm and designed
to address the issue of heterogeneous effects in different popula-
tions. Despite an initial stage requiring genotyping of 1000 ASN
individuals, our algorithm still outperformed single-population
designs.
granular. The most successful designs for the different loci

as found by MULTIPOP are displayed in Table S1.
Discussion

Discovering causal variants through fine-mapping follow-

up studies is one of the fundamental challenges facing

the genetics community today. Although the list of novel

loci associated with complex phenotypes is growing

quickly, the precise variants altering function are not as

forthcoming. As discussed in Lawrence et al.,7 the problem

of genetically indistinguishable SNPs, in which two associ-

ated SNPs are in perfect LD, makes the problem of causal

detection particularly challenging.

In this work, we challenge the intuitive assumption by

which a study consisting of a single homogeneous popu-

lation with a maximum genetic diversity is always the

optimal strategy, particularly in the context of the fine-

mapping stage. As opposed to this intuition, we show

that the LSR of a causal variant increases consistently

when multiple distant populations are genotyped in the

follow-up study. One possible explanation for this phe-

nomenon is that a combination of differences in LD struc-

tures among the populations results in a more robust

strategy for fine mapping; indeed, we show that for every

specific locus, the strategy involving multiple populations

is rarely optimal but that when averaging across multiple

loci, the strategy consistently provides improved LSR.

For the above reason, we do not advocate a general

strategy of choosing many diverse populations when con-

ducting fine mapping. Each study is different, and for some

studies the optimal strategy will indeed consist of genotyp-
The A
ing just a single population. As we show here, the optimal

strategy depends on the specific loci, the relative risks, and

the number of individuals to be genotyped. To this end, we

have created a software package called MULTIPOP to aid

researchers in choosing a successful design.

It is important to realize that the results demonstrated

here by no means cover all possible scenarios of follow-

up studies. Particularly, our analysis corresponds to an

additive disease model with one causal SNP, and we treat

one specific meta-analysis statistic. Any deviation from

this scenario requires another similar analysis. Thus,

researchers who are interested in using a different statistic,

testing a different hypothesis (e.g., that the disease follows

a dominance model and not an additive one), or opti-

mizing a different metric for power are recommended to

perform a set of simulations based on the framework

suggested here. Furthermore, error in the variance-covari-

ance matrix as a result of a finite reference sample size,20

as well as errors in the estimation of the relative risk,

such as those from the winner’s curse, might disturb the

accuracy of the LSR estimates in MULTIPOP and, hence,

the final design choices. The simulated data sets used in

this work were based on the HapMap genotypes. As more

sequence and denser genotype databases are becoming

available (e.g., the 1000 Genomes Project21), these esti-

mates will be more and more accurate and, thus, the choice

of the study design will come closer and closer to the

optimum.
Appendix

Accuracy of Meta-Analysis MVN Distribution

We assess the accuracy of the meta-analysis MVN distribu-

tion framework by comparing it to HapGen,11 a widely

used and accepted method of simulating case-control

panels. We randomly selected 1000 SNPs from chromo-

some 1 to serve as causal variants and took a window of

40 SNPs (20 downstream and 20 upstream of the causal

SNP) to simulate 1000 loci for fine mapping. For each locus

and each population, we used HapGen to generate 1000

case-control panels of 1000 cases and 1000 controls, each

with a relative risk of 1.4. We compared the mean c2, the

average rank of the causal variant, and the fraction of

noncausal SNPs with p values below 0.05 in this simulated

data to results drawn from the MVN distribution for

each locus by using MULTIPOP. For designs with multiple

populations, we used the weighted sum of the Z score

meta-analysis statistic to combine the data from each pop-

ulation. In addition, we compared the measures of effec-

tiveness described above over the simulated and MVN-

distribution-generated data. As shown in Table 1, the

statistics estimated from the simulated data are very similar

to those from the MVN distribution. There is a slight

increase in the measures of LSR from the empirically gener-

ated data from HapGen. We believe that this is due to

weaker correlation in the HapGen-generated data. Each
merican Journal of Human Genetics 86, 23–33, January 8, 2010 31



Table 1. Comparison between MVN and HapGen on Various
Measures, Showing the Tight Correlation between the Results
Obtained by MULTIPOP and those Obtained with the HapGen
Method

c2 Avg. Rank FP Rate

Design HapGen MVN HapGen MVN HapGen MVN

CEU 20.41 20.42 2.55 3.23 0.32 0.32

ASN 19.64 19.62 2.76 3.42 0.30 0.30

YRI 19.48 19.48 2.17 2.46 0.27 0.27

CEUþASN 35.53 37.11 1.71 2.00 0.39 0.37

CEUþYRI 34.58 36.82 1.30 1.29 0.38 0.36

YRIþASN 33.85 35.87 1.16 1.24 0.37 0.34

CEUþYRIþASN 49.37 53.36 1.01 0.98 0.43 0.39

c2 is the average c2 value of the causal variant. Avg. Rank is the average rank of
the causal variant. FP Rate is the average fraction of noncausal SNPs with
p values below 0.05. The slight differences are most likely due to the modeling
of recombination events in HapGen that break the LD structure.
recombination event in the Li-Stephens model will reduce

the correlation and thereby improve the LSR of fine

mapping.
Supplemental Data

Supplemental Data include one figure and one table and can be

found with this article online at http://www.ajhg.org.
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